2層k-平面性と外k-平面性判定のパラメータ化計算量

Yasuaki Kobayashi

(Hokkaido University)

Yuto Okada (Nagoya University)

Alexander Wolff

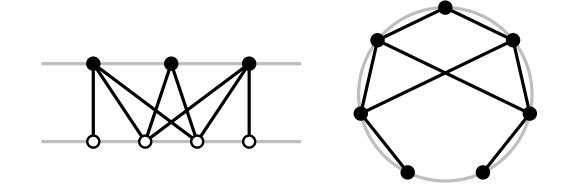
(Universität Würzburg)

2025-01-27 @ 冬の LA シンポジウム

本研究の概要

グラフ描画分野では、これらの問題がよく研究されている.

- 片面交差数最小化問題
- 両面交差数最小化問題
- 円形交差数最小化問題

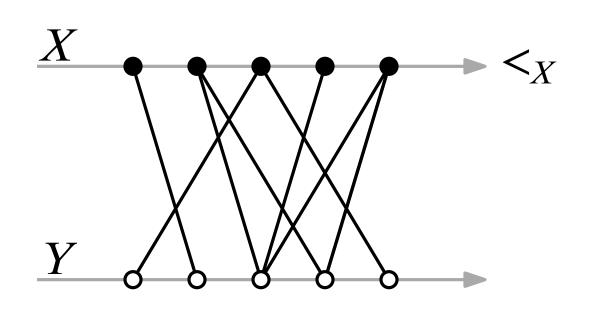


本研究では,以下の「k-平面性判定版(後述)」を考える.

- 片面 k-平面性判定問題
- 両面 k-平面性判定問題
- 外 k-平面性判定問題

これらの問題に対し,kをパラメータとしたときのアルゴリズムや困難性を示す.

背景: 2層描画における交差数最小化問題



片面交差数最小化問題

入力: 二部グラフ $G = (X \cup Y, E)$,整数 k,X の線形順序 $<_X$

質問: Yを並び替えて,交差数をk以下に出来るか?

両面交差数最小化問題

入力: 二部グラフ $G = (X \cup Y, E)$, 整数 k

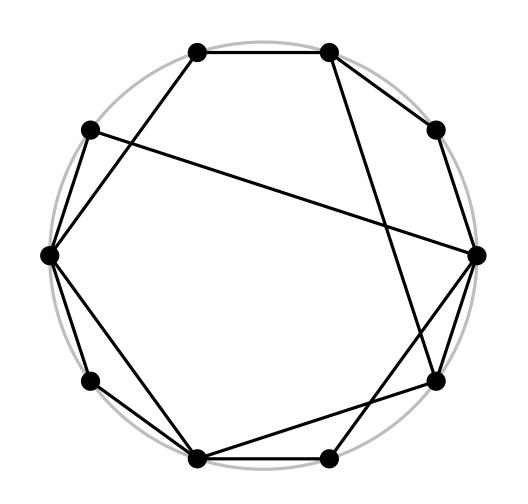
質問: X,Yを並び替えて,交差数をk以下に出来るか?

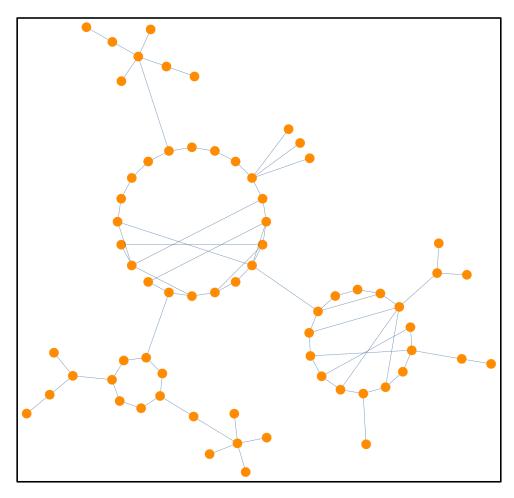
背景: 円形描画における交差数最小化問題

円形(外平面)交差数最小化問題

入力: グラフ G = (V, E), 整数 k

質問: Vを並び替えて,交差数をk以下に出来るか?



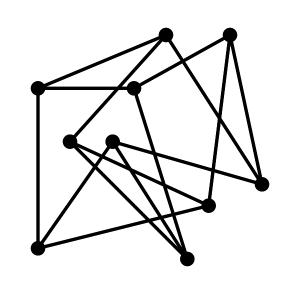


ソフトウェアでの応用[1]

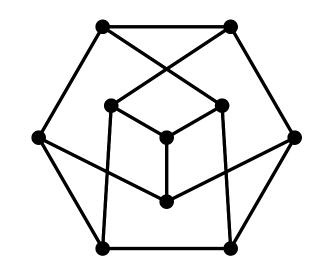
二つの「見やすさ」の指標: 交差数と k-平面性

交差数

全体の交差の数が少なければ,見やすい.



交差数 12 3-平面描画



交差数 3 1-平面描画

k-平面性

各辺上の交差の数の最大値が少なければ,見やすい. 各辺上の交差が高々k個である描画を,k-平面描画と呼ぶ.

本研究で扱う問題

片面 k-平面性判定問題

入力: 二部グラフ $G = (X \cup Y, E)$,整数 k,X の線形順序 $<_X$

質問: Yを並び替えて,k-平面描画に出来るか?

両面 k-平面性判定問題

入力: 二部グラフ $G = (X \cup Y, E)$, 整数 k

質問: X,Yを並び替えて,k-平面描画に出来るか?

外 k-平面性判定問題

入力: グラフ G = (V, E), 整数 k

質問: Vを並び替えて,k-平面描画に出来るか?

先行研究と本研究の結果

	片面	両面	円形 / 外平面
交差数最小化	交差数で FPT / NP 完全		
0-平面性判定	線形時間	線形 (キャタピラ)	線形 (外平面的グラフ)
<i>k</i> -平面性判定 (先行研究)	不明	不明	[GD 2013] k = 1: 線形時間 [GD 2017] k 定数: 準多項式時間
k-平面性判定 (本研究)	• FPT $2^{O(k \log k)} n^c$	 XP 2^{O(k³)}n^{2k+c} XNLP 完全 	 XP 2^{O(k log k)}n^{3k+c} XNLP 困難

注: FPT \subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq XNLP \subseteq XP

 $O(f(k) \cdot n^c)$

 $O(f(k) \cdot n^{g(k)})$

バンド幅問題との関係

両面 k-平面性・外 k-平面性の結果は,バンド幅問題がベース・ (次ページ)

計算困難性

バンド幅問題 の XNLP 困難性

帰着

- 両面 *k*-平面性判定
- 外 *k*-平面性判定

アルゴリズム

[Saxe, 1980] バンド幅問題に対する XP アルゴリズム

【同様の手法

両面 k-平面性判定の XP

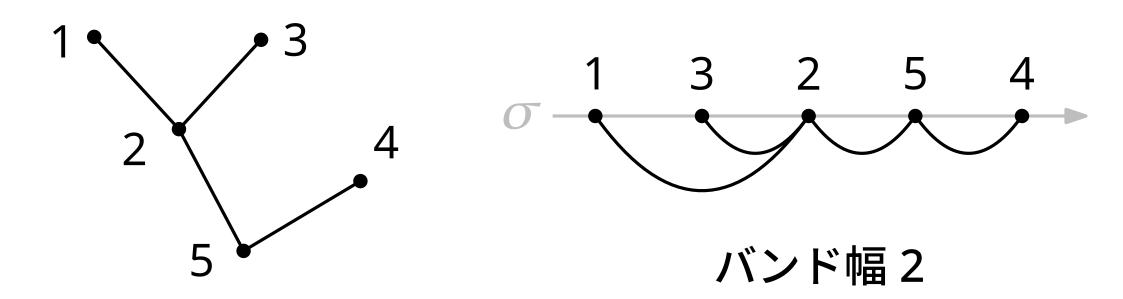
ዿ 発展

• 外 k-平面性判定の XP

バンド幅問題とは

バンド幅

グラフ G = (V, E) と V の順列 $\sigma: V \to \{1, ..., n\}$ に対して,順列 σ のバンド幅は $\max_{\{u,v\}\in E} |\sigma(u) - \sigma(v)|$ で定義される.



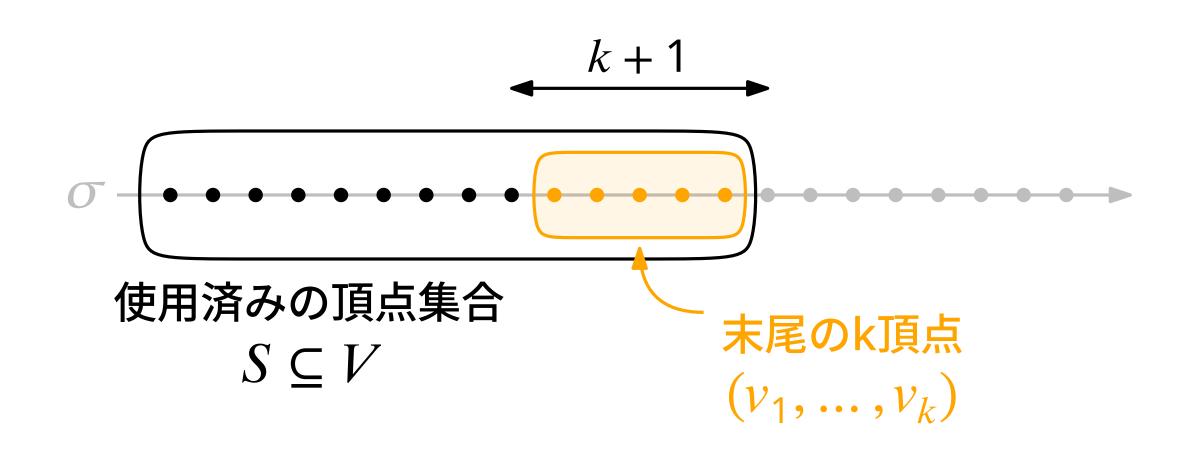
バンド幅問題

入力: グラフ G = (V, E), 整数 k

質問: Vの順列 σ で,バンド幅高々kのものが存在するか?

バンド幅問題に対する Held-Karp 型動的計画法

[Saxe, 1980] による XP は,シンプルな動的計画法がベース. 先頭から順列 σ の構築を試みる.



この動的計画法で $O(2^n k! n^{k+1})$ 時間で解ける.

バンド幅問題に対する XP アルゴリズム

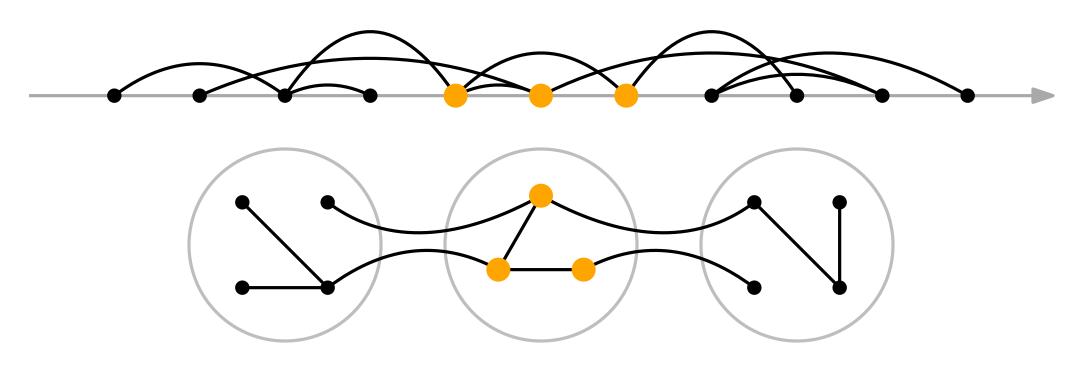
[Saxe, 1980] のアイデア

実は,各 $(v_1, ..., v_k)$ に対し 2^{2k^2} 個の S のみ考えればよい.

 $\rightarrow O(2^{n}k!n^{k+1})$ 時間から $O(2^{2k^2}(k)!n^{k+1})$ 時間になり XP.

観察①

バンド幅高々kの順列上で連続するk頂点について,「左側の頂点集合」と「右側の頂点集合」の間に辺は無い.

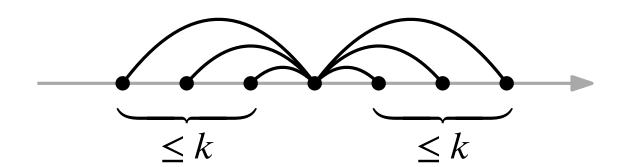


バンド幅問題に対する XP アルゴリズム

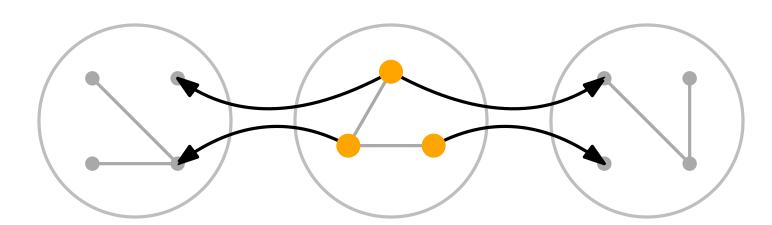
観察②

入力のグラフに対して,以下を仮定できる.

- 連結
- 最大次数が高々 2k



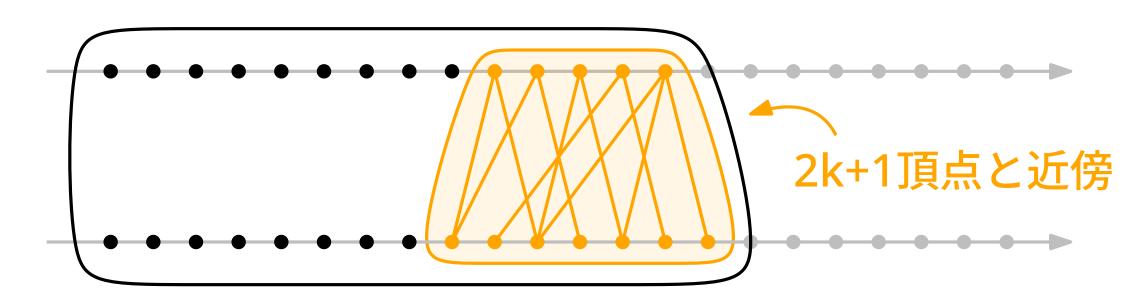
最大次数より,k 頂点から左右へ向かう辺の数は $2k^2$ 本.



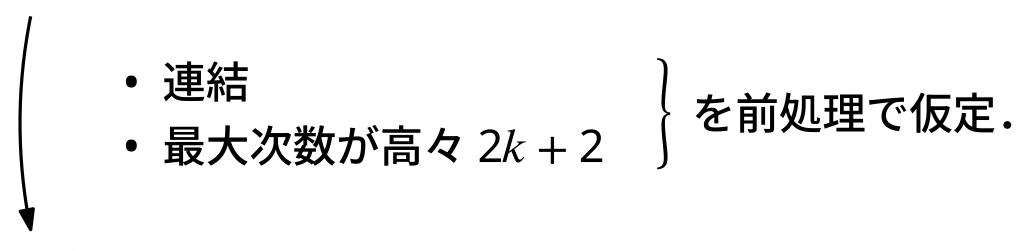
連結性より,「それらの辺が左右どちらへ行くか」の情報から左右の頂点集合が復元可能. \rightarrow 考慮すべき S は 2^{2k^2} 個.

両面k-平面性に対する XP アルゴリズムのアイデア

両面k-平面性判定問題も,同様の構造を持っている.



 $2^{n}f(k) \cdot n^{2k+c}$ 時間の同様の動的計画法が設計可能

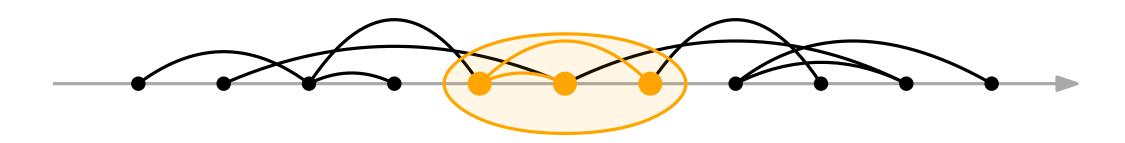


 $2^{O(k^3)} \cdot n^{2k+c}$ 時間の XP アルゴリズム・

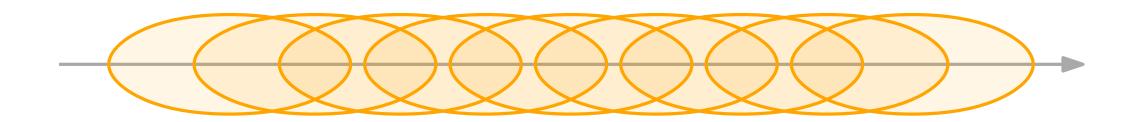
これまでの XP アルゴリズムのハイレベルアイデア

バンド幅・両面 k-平面性の嬉しい構造

解を仮定したとき,「解を分割するf(k) サイズの構造」がある. さらに,その構造から解の分割方法が高々g(k) 通りに定まる.



そして,その「f(k) サイズの構造」がパス状に広がっている. これを追って,表サイズ $g(k)n^{f(k)}$ の動的計画法を設計した.



しかし,外k-平面性は円形の描画でパス的構造を持たない.

外k-平面性に対する XP アルゴリズムのアイデア

夏のLAシンポジウムで、以下の雰囲気の定理を示した.

• 任意の外k-平面描画を,f(k) サイズの描画のパーツの木に

分解できる.

Oksana Firman (Universität Würzburg)

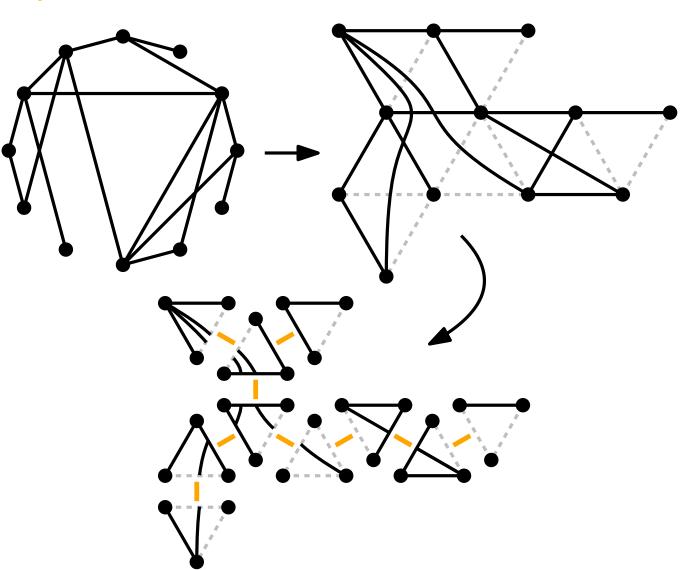
Myroslav Kryven (University of Manitoba)

Alexander Wolff (Universität Würzburg)

Grzegorz Gutowski (Jagiellonian University)

Yuto Okada (Nagoya University)

2024-07-16 @ 夏の LA シンポジウム



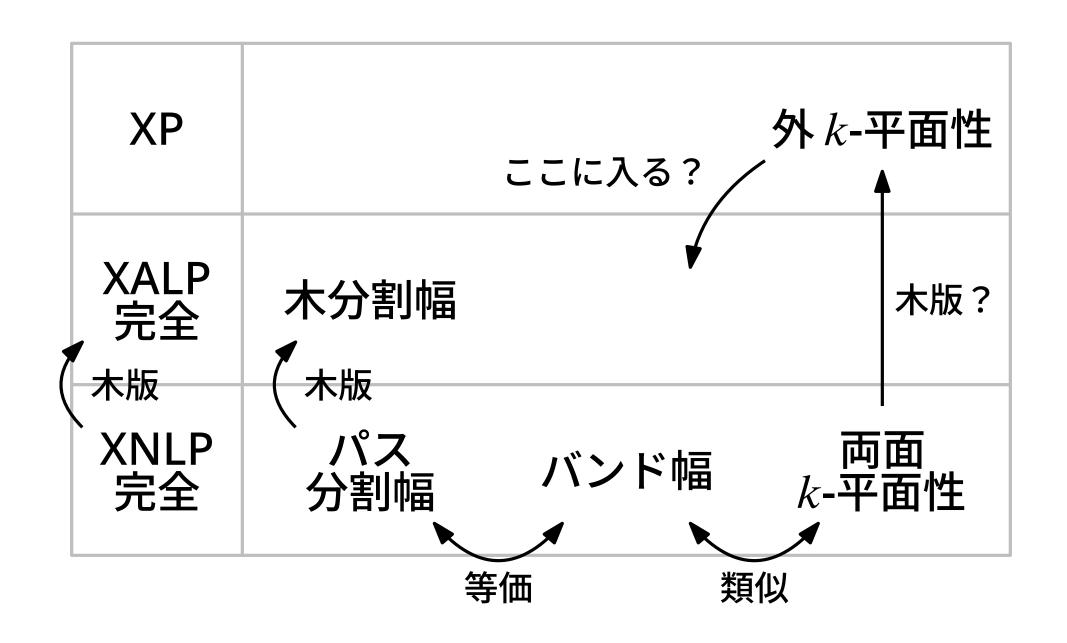
この解の木構造の上で同様の動的計画法ができ,XPを示した.

まとめと今後の展望

	片面	両面	円形 / 外平面
交差数最小化	交差数で FPT / NP 完全		
0-平面性判定	線形時間	線形 (キャタピラ)	線形 (外平面的グラフ)
<i>k</i> -平面性判定 (先行研究)	不明	不明	[GD 2013] k = 1: 線形時間 [GD 2017] k 固定: 準多項式時間
k-平面性判定 (本研究)	• FPT $2^{O(k \log k)} n^c$	 XP 2^{O(k³)}n^{2k+c} XNLP 完全 	 XP 2^{O(k log k)}n^{3k+c} XNLP 承難

- ・ 片面 k-平面性の NP 完全性
 ・ 2層からℓ 層描画への拡張
- 外 k-平面性の XALP 完全性

付録: 外 k-平面性の計算量の予想



注: FPT \subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq XNLP \subseteq XALP \subseteq XP

付録: XNLP の定義

XNLP

計算量クラス XNLP は,パラメータ化問題のうち,入力長をn,パラメータをk として,ある計算可能関数f が存在してその問題を $f(k)n^{O(1)}$ 時間かつ $f(k)\log n$ 空間で解く非決定性アルゴリズムが存在するものすべてからなる.