Dichotomies for Tree Minor Containment with Structural Parameters

Tatsuya Gima¹, Soh Kumabe², Kazuhiro Kurita¹, <u>Yuto Okada¹</u>, Yota Otachi¹ 2023-07-03 夏の LA シンポジウム @ 函館

 $^{^{1}\,\}mathrm{Nagoya}$ University, $^{2}\mathrm{The}$ University of Tokyo

概要

次の問題を考える.一般の木では、NP 完全である.

TREE MINOR CONTAINMENT

入力:木T,P.

質問: TはPをマイナーとして含むか?

そこで,以下のパラメータを制限した場合を考える.

- ・直径
- ・パス離心数
- ・パス幅

各パラメータについて、「定数いくつまで制限すると多項式時間で解けるのか/いくつから NP 困難になるのか」境界を明らかにする.

準備:マイナー

マイナー

グラフGがHをマイナーとして含むとは、Gに対して以下の操作を繰り返してHが得られることをいう.

- ・頂点の削除
- ・辺の削除
- ・辺の縮約(図のように、辺の端点を1つの頂点にする)



図 1: 辺 e の縮約

準備:キャタピラ

本研究で重要なグラフクラス,キャタピラ(毛虫)も定義する.

キャタピラ

グラフ G = (V, E) がキャタピラであるとは、G が木かつ、G 上の単純パス P で以下を満たすものが存在することをいう.

・すべての頂点 $v \in V$ について、v から P までの距離が 1 以下.

上記の P を背骨と呼び、背骨から足が生えたような形の木である.

図 2: キャタピラの例

準備:各種パラメータの定義

グラフG = (V, E) に対し、それぞれ diam(G), pe(G), pw(G) で表す.

直径 (diameter)

2 点間の距離の最大値 $\max_{u,v \in V} \operatorname{dist}(u,v)$.

パス離心数(path eccentricity)

以下を満たす最小の k.

・あるG上の単純パスPが存在し、すべての頂点 $v \in V$ について、vからPまでの距離がk以下.

キャタピラの一般化でキャタピラ ⇔ パス離心数1以下の木である.

パス幅 (pathwidth)

詳しい説明省略. キャタピラ ⇔ パス幅 1以下の木が知られている.

他の containment 系の問題との比較

グラフがグラフを○○として含むか?はよく研究されている.

SUBGRAPH ISOMORPHISM

質問: GはHを部分グラフとして含むか?

TOPOLOGICAL MINOR CONTAINMENT

質問: Gは H を <mark>位相的 マイナー</mark> (説明略) として含むか?

MINOR CONTAINMENT

質問: GはHをマイナーとして含むか?

これらの問題は一般のグラフ上ではすべて NP 完全. G, H を木に制限すると、部分グラフと位相的マイナーは多項式時間で解ける.

しかし、マイナーの場合は木に制限しても NP 完全.

どれだけ制限された木なら多項式時間で解けるのか?

先行研究:木における計算量(最大次数・直径)

P の最大次数 d が小さいとき、多項式時間で解ける.

Kilpeläinen and Mannila, 1995¹

TREE MINOR CONTAINMENT は $O(4^d \cdot \operatorname{poly}(|T|))$ 時間で解ける.

Akutsu et al., 2021²

TREE MINOR CONTAINMENT は $O(2^d \cdot \text{poly}(|T|))$ 時間で解ける.

一方で、直径 は定数で抑えても難しい.

Matoušek and Thomas, 1992³

TREE MINOR CONTAINMENT は diam(T), $diam(P) \le 8$ でも NP 完全.

¹https://doi.org/10.1137/S0097539791218202

²https://doi.org/10.1016/j.tcs.2021.06.013

³https://doi.org/10.1016/0012-365X(92)90687-B

先行研究:木における計算量(パス離心数・パス幅)

キャタピラ同士なら多項式時間で解ける.

Gupta et al., 2005⁴ (の系)

T, P がキャタピラのとき、T が P をマイナーとして含むかは多項式時間で判定可能.

すなわち, TREE MINOR CONTAINMENT は,

- ・パス離心数 $pe(T), pe(P) \le 1$ のとき、多項式時間で解ける.
- ・パス幅 $pw(T), pw(P) \le 1$ のとき、多項式時間で解ける.

キャタピラから多項式時間で解けるクラスを拡げる方向として、パス離心数・パス幅を考える.

⁴https://doi.org/10.1016/j.dam.2002.12.005

我々の結果:直径

h T, P の直径について、P/NP 完全(NPC)の境界を明らかにした。

$\frac{\operatorname{diam}(T)}{\operatorname{diam}(P)}$	≤ 3	4	5	≥ 6
≤ 3	Р			
4				NPC
5				
≥ 6				

テーブル 1: 直径における計算量

- ・ $\lceil \operatorname{diam}(T) \le 6, \operatorname{diam}(P) \le 4$ でも NP 完全」 $\lceil \operatorname{ber}(T) \le 6, \operatorname{diam}(P) \le 4 \rceil$
- ・それより制限したとき、多項式時間で解けることを示した.

⁵先行研究では diam(T), diam(P) ≤ 8

我々の結果:パス離心数・パス幅

パス離心数・パス幅でも P/NP 完全の境界を明らかにした.

pe(T)	≤ 1	2	≥ 3
≤ 1		Р	
2			NPC
≥ 3			

テーブル 2: パス離心数

pw(T) $pw(P)$	≤ 1	2	≥ 3
≤ 1		Р	
2		NPC	
≥ 3			

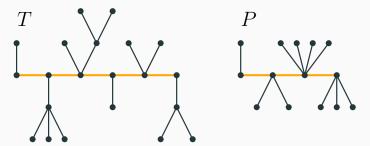
テーブル 3: パス幅

- ・それぞれ, $pe(T) \le 3, pe(P) \le 2$ あるいは, $pw(T), pw(P) \le 3$ でも NP 完全であることを示した.
- ・それより制限したとき、多項式時間で解けることを示した.

この中で「木Pがキャタピラならば多項式時間で解ける」について簡単に説明する.

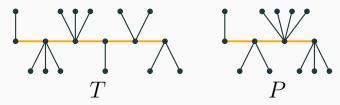
Pがキャタピラのときの多項式時間アルゴリズム (1)

「木Pの背骨を、木Tのどのパスに埋め込むか」を全通り試す.

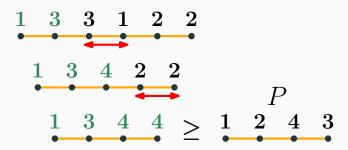


実は、埋め込み先のパスと葉以外の↑の頂点は使っても得しない. つまり、適切に縮約して葉をパスにつけたものへ帰着できる.

Pがキャタピラのときの多項式時間アルゴリズム (2)



あとは次数だけ見て、縮約して各次数を P 以上にできるか判定する. これは左から次数が足りるまで縮約していくと判定できる.

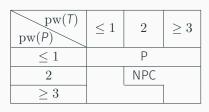


我々の結果:パス離心数・パス幅

パス離心数・パス幅でも P/NP 完全の境界を明らかにした.

pe(T)	≤ 1	2	≥ 3
≤ 1		Р	
2			NPC
≥ 3			

テーブル 4: パス離心数



テーブル 5: パス幅

- ・それぞれ, $pe(T) \le 3, pe(P) \le 2$ あるいは, $pw(T), pw(P) \le 3$ でも NP 完全であることを示した.
- 木 P がキャタピラならば多項式時間で解けることを示した。
- ・pe(T), pe(P) = 2 ならば多項式時間で解けることを示した.

「Pがキャタピラ」から少し緩めただけで、NP 完全になってしまう.

まとめ

木Tは木Pをマイナーとして含むか?という問題を考えて、直径・パス離心数・パス幅上を制限したときの計算量をすべて明らかにした.

$\frac{\operatorname{diam}(T)}{\operatorname{diam}(P)}$	≤ 3	4	5	≥ 6
≤ 3			Р	
4				NPC
5				
≥ 6				

pe(T) $pe(P)$	≤ 1	2	≥ 3
≤ 1		Р	
2			NPC
≥ 3			

pw(T) pw(P)	≤ 1	2	≥ 3	
≤ 1	Р			
2	NPC			
≥ 3				

キャタピラ(pe, pw が 1 以下)から緩めるとすぐに NP 完全になる。 キャタピラ周辺の何らかの構造が本質的に効いているように見え, それを明らかにできると嬉しい。

付録:直径 6,4の NP 困難性の帰着の簡単な説明 (1)

新たに以下の set cover の変種を定義し、これを経由して示した.

INCLUSIVE SET COVER

入力:集合 $U = \{1, 2, ..., n\}$, 集合族 $S \subseteq 2^U$, 整数 k.

質問: S から高々 k 個の集合 $S_1, S_2, ..., S_k$ を選び, $U \subseteq \bigcup_i S_i$ にできるか?ただし,選ぶ前に好きな $x \in S \in S$ を x 以下の整数で置き換える操作を何度でもできる。

たとえば、 $U = \{1,2,3,4\}$ として、集合 $\{1,3\},\{3,4\}$ を選ぶと、set cover としてはカバーできていない.

しかし INCLUSIVE SET COVER ではどちらかの 3 を 2 に置き換えることで、カバーできる.

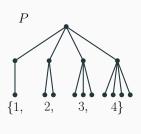
付録:直径 6,4の NP 困難性の帰着の簡単な説明(2)

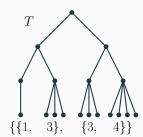
INCLUSIVE SET COVER

入力:集合 $U = \{1, 2, ..., n\}$,集合族 $S \subseteq 2^U$,整数 k.

質問: S から高々 k 個の集合 $S_1, S_2, ..., S_k$ を選び、 $U \subseteq \bigcup_i S_i$ にできるか?ただし、選ぶ前に好きな $x \in S \in S$ を x 以下の整数で置き換える操作を何度でもできる.

「 $y \in U$ を $x \in S \in S$ でカバーする」は,「子がy 個のスター」を「子がx 個のスター」へマイナーとして埋め込むことで表現できる. 各 $S = \{s_1, s_2, \dots\} \in S$ に対して,子が $s_1, s_2 \dots$ 個のスターたちからなる部分木を作って,ガジェットでx 個選ぶことを強制する.





付録: ラベル付き TREE MINOR CONTAINMENT における困難性

ラベル付き TREE MINOR CONTAINMENT は TREE INCLUSION と呼ばれる.

TREE INCLUSION

入力: 根付き・ラベル付き木 T, P.

質問:木Tに辺縮約を繰り返し、Pに(ラベルまで)一致させられるか?ただし、辺縮約した際、新たな頂点のラベルは根側の頂点のラベルになる。

たとえば我々の INCLUSIVE SET COVER からの帰着と同様に set cover から帰着すると、Pが star でも NP 困難になる.

Akutsu et al., 20216

T, P の深さをそれぞれ 2, 1 以下に制限しても、TREE INCLUSION は NP 完全.

⁶https://doi.org/10.1016/j.tcs.2021.06.013