Bounding the Treewidth of Outer *k*-Planar Graphs via Triangulations

Oksana Firman (Universität Würzburg)

Myroslav Kryven (University of Manitoba)

Alexander Wolff

(Universität Würzburg)

Grzegorz Gutowski (Jagiellonian University)

> Yuto Okada (Nagoya University)

> > 2024-09-19 @ GD 2024

Outer *k***-Planar Graphs**

Outerplanar graph

admits a drawing s.t.

- vertices on a circle
- straight-line
- no crossing

Outer *k*-planar graph

admits a drawing s.t.

- vertices on a circle
- straight-line
- k-planar

Abstract

Main Contribution

Any outer k-planar graph admits a good triangulation.

gives Improved Upper Bounds -

Separation Number

$$2k + 3 -$$

[Chaplick et al., GD 2017] (almost) tight

 $\rightarrow k+2$

Treewidth

 $3k + 11 \rightarrow 1.5k + 2$ [Wood and Telle, GD 2006] (lowerbound: k + 2)

... and some other results.

Triangulation on Outerplanar Graphs

After adding some edges until it becomes maximal, every inner face will be a triangle.

Triangulation on Outerplanar Graphs

After adding some edges until it becomes maximal, every inner face will be a triangle.

But outer *k*-planar graphs may have a crossing...?

Triangulation on Outer *k***-Planar Graphs**

Lemma 6 For every $k \ge 0$, given an outer k-planar drawing,

Triangulation on Outer *k***-Planar Graphs**

Lemma 6

For every $k \ge 0$, given an outer k-planar drawing, The outer cycle admits a triangulation s.t.

Triangulation on Outer *k***-Planar Graphs**

Lemma 6

For every $k \ge 0$, given an outer k-planar drawing, The outer cycle admits a triangulation s.t. each edge crosses the original graph at most k times.

The Advantage of Triangulation

Key Point

The triangulation separates the given graph G into:

- (a subgraph of) maximal outerplane graph H
- crossing edges (sparsely distributed!!)

Every edge of *H* has at most *k* crossing edges. Every triangle of *H* has at most 3k crossing edges. \rightarrow We can re-use properties of outerplanar graphs.

Upper Bound on Separation Number

On outerplanar graphs...

Every maximal outerplanar graph is known to have an edge that is a balanced separator.

Note: A balanced separator of *G* is a vertex set whose removal yields components of size at most $\frac{2}{3}|G|$.

Upper Bound on Separation Number

On outer *k***-planar graphs...**

The maximal outerplane graph H also has a balanced separator edge with $\leq k$ crossing edges.

Upper Bound on Separation Number

On outer *k***-planar graphs...**

The maximal outerplane graph H also has a balanced separator edge with $\leq k$ crossing edges.

The edge and k endpoints form a balanced separator. \rightarrow separation number at most k + 2.

Upper Bound on Treewidth

On outerplanar graphs...

The weak dual of a maximal outerplane graph is a tree.

Replacing each vertex with the corresponding triangle yields a tree decomposition of width 2.

Upper Bound on Treewidth

On outer *k***-planar graphs...**

We use a tree decomposition of the graph *H*. Then we only need to deal with the crossing edges.

Each triangle (= bag) has at most 3k crossing edges. \rightarrow treewidth 3k + 2 (naïve), can be improved to 1.5k + 2.

- 1. Take any edge from the outer cycle.
- 2. There always exists a suitable vertex *w*.
- 3. Create a triangle with the vertex, and recurse.

- 1. Take any edge from the outer cycle.
- 2. There always exists a suitable vertex *w*.
- 3. Create a triangle with the vertex, and recurse.

- 1. Take any edge from the outer cycle.
- 2. There always exists a suitable vertex *w*.
- 3. Create a triangle with the vertex, and recurse.

- 1. Take any edge from the outer cycle.
- 2. There always exists a suitable vertex *w*.
- 3. Create a triangle with the vertex, and recurse.

- 1. Take any edge from the outer cycle.
- 2. There always exists a suitable vertex *w*.
- 3. Create a triangle with the vertex, and recurse.

- 1. Take any edge from the outer cycle.
- 2. There always exists a suitable vertex *w*.
- 3. Create a triangle with the vertex, and recurse.

(in Lemma 6)

If $\{u, v\}$ crosses the original graph at most k times, there always exists a suitable vertex w.

(in Lemma 6)

If $\{u, v\}$ crosses the original graph at most k times, there always exists a suitable vertex w.

(in Lemma 6)

If $\{u, v\}$ crosses the original graph at most k times, there always exists a suitable vertex w.

(in Lemma 6)

If $\{u, v\}$ crosses the original graph at most k times, there always exists a suitable vertex w.

(in Lemma 6)

If $\{u, v\}$ crosses the original graph at most k times, there always exists a suitable vertex w.

If $\{u, v\}$ has some crossings,

12/16

(iii) The middle edge has no crossing.

(iii) The middle edge has no crossing.

(iv) The middle edge has some crossings. Choose the endpoint of fewer side as *w*.

Summary & Other Results

Main Results

• Improved upper bounds via a good triangulation.

	Upper	Lower
k	<i>k</i> + 2	<i>k</i> + 2

separation number (Orange results are ours.)

	Upper	Lower
0	2	2 (<i>K</i> ₃)
1	3	3 (<i>K</i> ₄)
2	4	$4(K_{5})$
k	1.5 <i>k</i> + 2	<i>k</i> + 2

treewidth

Other Results

- Lower bounds with stacked prisms for even k.
- Treewidth 4 for k = 2 by a specialized triangulation.
- Similar results on outer min-*k*-planar graphs.

Future Work & Open Problems

Other application of the triangulation?

Fill the gap between bounds of the treewidth.

Poly-time recognition of outer *k***-planar graphs**.

Linear-time algorithm known for k = 1 [Auer et al., '16]. For fixed k, $O(2^{\text{poly}(\log(n))})$ -time [Chaplick et al., '17].

Triangulation of *k***-planar graphs**?

Our triangulation can be stated as this:

On every outer *k*-planar drawing, we can draw a maximal outerplane graph with the same vertices s.t. each edge crosses the drawing at most *k* times. Does this also hold for *k*-planar graphs?

Appendix: Lower Bounds

Stacked Prisms

are obtained by connecting the top & bottom of grids.

The $m \times n$ grid satisfies: (for large enough m)

- Outer (2n 2)-planar graph
- Treewidth 2*n*
- Separation number 2n

 \rightarrow lower bounds k + 2 on both for every even k > 0.

Appendix: Treewidth 4 **for** k = 2

Lemma 8

Every outer 2-planar graph admits a triangulation s.t. each triangle has at most 4 crossing edges.

Lemma 11

If the outer cycle of *G* admits a triangulation s.t. each triangle has at most *c* crossings, then $tw(G) \le (c + 5)/2$.

Theorem 12

Every outer 2-planar graphs have treewidth at most 4, which is tight because of K_5 .

Appendix: Results on Outer Min-*k***-Planar**

Min-k-Planar

If edges e_1 and e_2 cross, then either e_1 or e_2 have at most k crossings.

Lemma 9

Every outer min-*k*-planar graph admits a triangulation s.t. each edge has at most 2k - 1 crossing edges.

Theorem 14 (Treewidth)

Every outer min-*k*-planar graph has tw at most 3k + 1.

Theorem 16 (Separation Number)

Every outer min-k-planar graph has sn at most 2k + 1.